57
U

Property:Abstract

From Linked Earth Wiki
Jump to: navigation, search
  • Property Type: Text

A summary of a scientific article.

Pages using the property "Abstract"

Showing 20 pages using this property.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

P
Publication.10.1016/j.orggeochem.2012.11.001 +The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the Common Era (past 2000 years) global ocean sea surface temperature (SST) variations, and the underlying driving mechanisms, are poorly constrained. Here we present a global synthesis of Common Era SSTs derived solely from marine archives. The synthesis uses 57 individual SST reconstructions that meet strict quality control criteria. We find an SST cooling trend during 0-1800 CE that is robust against explicit tests for potential biases in the reconstructions. The surface cooling trend for 801-1800 CE is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with SST simulated by an ensemble of climate model simulations using best estimates of past forcings. Single and cumulative forcing climate model simulations suggest that the ocean SST cooling trend is not a response to orbital forcing, which is globally weak over this interval, but rather to increased frequency of explosive volcanism in recent centuries. This finding provides support for the hypothesis that ocean dynamics transform episodic volcanic forcing into a centennial and global-scale cooling trend.  +
Publication.10.1016/j.palaeo.2007.08.013 +In situ measurements of Mg/Ca, Zn/Ca, Mn/Ca, and Ba/Ca in Globigerinoides bulloides and Globigerina ruber from southwest Pacific core top sites and plankton tow are reported and their potential as paleoproxies is explored. The modern samples cover 20° of latitude from 34°S to 54°S, 7-19°C water temperature, and variable influence of subantarctic (SAW) and subtropical (STW) surface waters. Trace element signatures recorded in core top and plankton tow planktic foraminifera are examined in the context of the chemistry and nutrient profiles of their modern water masses. Our observations suggest that Zn/Ca and Mn/Ca may have the potential to trace SAW and STW. Intraspecies and interspecies offsets identified by in situ measurements of Mg/Ca and Zn/Ca indicate that these ratios may also record changes in thermal and nutrient stratification in the upper ocean. We apply these potential proxies to fossilized foraminifera from the high-resolution core MD97 2121. At the Last Glacial Maximum, surface water Mg/Ca temperature estimates indicate that temperatures were approximately 6-7°C lower than those of the present, accompanied by low levels of Mn/Ca and Zn/Ca and minimal thermal and nutrient stratification. This is consistent with regional dominance of SAW and reduced STW inflow associated with a reduced South Pacific Gyre (SPG). Upper ocean thermal and nutrient stratification collapsed during the Antarctic Cold Reversal, before poleward migration of the zonal winds and ocean fronts invigorated the SPG and increased STW inflow in the early Holocene. Together with reduced winds, this favored a stratified upper ocean from circa 10 ka to the present.  +
Publication.10.1016/j.quascirev.2005.11.010 +Records of planktonic and benthic foraminiferal d18O and planktonic Mg/Ca from core TR163-22, just northwest of the Galápagos Islands, reveal a detailed (250¿450 year resolution) climate history of the region over the last 135 thousand years (kyr). Sea surface temperatures (SSTs), reconstructed from G. ruber Mg/Ca, averaged 24.3±0.4 °C during the Holocene, 22.6±0.6 °C during marine isotope stage (MIS) 2, 3 and 4, and 26.0±0.9 °C during MIS 5e. Changes in SST lead changes in both planktonic and benthic d18O by an average not, vert, similar3 kyr, suggesting that SST changes in this region predated continental ice volume changes. Changes in SST display clear millennial scale variability, especially in marine isotope stage 3, with behavior somewhat similar to Antarctic proxy air temperature and South Pacific SST records. Removal of the temperature component from the planktonic d18O record demonstrates that glacial-interglacial d18O-water changes at this site were 1.0±0.2¿, similar to estimates for mean ocean shifts, implying that salinity changes due to regional hydrological variation between the Last Glacial Maximum and Holocene in the Galápagos region were minimal. Comparison between the TR163-22 SST record and an SST record from core TR163-19 North of the Equatorial Front reveals a largely similar broad-scale climate history, suggesting that changes in the Galápagos region were caused by large scale forcing rather than by local or regional dynamical changes. Changes in atmospheric greenhouse forcing are the most plausible explanation for the observed large-scale climate changes in the eastern equatorial Pacific.  +
Publication.10.1016/j.quascirev.2016.02.012 +The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and d18O analyses and to estimate seawater d18O (d18Osw). The difference between surface and thermocline temperatures (delta T) and d18Osw (delta d18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our delta d18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the d18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ~18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum d18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.  +
Publication.10.1016/j.quascirev.2016.11.012 +The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated ( 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950–1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.  +
Publication.10.1029/1998PA900015 +Past sea surface temperatures (SST) in the northern and southern areas of the South China Sea have been reconstructed for the past 220 kyr using the UK37 alkenone index. The SST profiles follow the glacial/interglacial pattern exhibiting differences between Last Glacial Maximum and Holocene that are 1°–3°C larger than those observed at the same latitudes in the Atlantic and Pacific Oceans. In Termination I both planktonic foraminiferal δ18O and SST exhibit well-defined Bølling-Allerød and Younger Dryas events with temperature differences between both periods of 0.8° and 0.4°C in north and south, respectively. SSTs record a constant north-south difference of 1°C in the interglacials and nearly 2.5°C in the glacial stages. These differences define two distinct climatic and water circulation patterns that correspond with glacial/interglacial sea level oscillations which opened and closed water exchange with the tropical Indo-Pacific Ocean through the present Sunda Shelf.  +
Publication.10.1029/2002GL016612 +Variations in tropical sea surface temperature patterns and the phasing relative to climate change in higher-latitudes provide insight into the mechanisms of climate change on both orbital and shorter time-scales. Here, we present well-dated, high-resolution records of planktonic foraminiferal 18O and Mg/Ca-based SST spanning the last deglaciation from the Sulu Sea, located in the western equatorial Pacific. The results indicate that the last glacial maximum was 2.3 ± 0.5°C cooler than present in the Sulu Sea with a concomitant decrease in sea surface salinity. The similarity between variations in surface salinity in the Sulu Sea, the western and eastern equatorial Pacific, and the Greenland ice-core record suggests that the observed changes in salinity reflect large-scale rearrangement of atmospheric patterns, which were coherent and synchronous throughout the Northern Hemisphere. The results suggest that the glacial equatorial Pacific climate was strongly influencedby both tropical, and extra-tropical forcing, although it is not clear whether interannual (ENSO) variability is a good analogue of glacial-interglacial climate change.  +
Publication.10.1029/2002PA000768 +Holocene and latest Pleistocene oceanographic conditions and the coastal climate of northern California have varied greatly, based upon high-resolution studies (ca. every 100 years) of diatoms, alkenones, pollen, CaCO3%, and total organic carbon at Ocean Drilling Program (ODP) Site 1019 (41.682°N, 124.930°W, 980 m water depth). Marine climate proxies (alkenone sea surface temperatures [SSTs] and CaCO3%) behaved remarkably like the Greenland Ice Sheet Project (GISP)-2 oxygen isotope record during the Bølling-Allerod, Younger Dryas (YD), and early part of the Holocene. During the YD, alkenone SSTs decreased by >3°C below mean Bølling-Allerod and Holocene SSTs. The early Holocene (ca. 11.6 to 8.2 ka) was a time of generally warm conditions and moderate CaCO3 content (generally >4%). The middle part of the Holocene (ca. 8.2 to 3.2 ka) was marked by alkenone SSTs that were consistently 1-2°C cooler than either the earlier or later parts of the Holocene, by greatly reduced numbers of the gyre-diatom Pseudoeunotia doliolus (<10%), and by a permanent drop in CaCO3% to <3%. Starting at ca. 5.2 ka, coastal redwood and alder began a steady rise, arguing for increasing effective moisture and the development of the north coast temperate rain forest. At ca. 3.2 ka, a permanent ca. 1°C increase in alkenone SST and a threefold increase in P. doliolus signaled a warming of fall and winter SSTs. Intensified (higher amplitude and more frequent) cycles of pine pollen alternating with increased alder and redwood pollen are evidence that rapid changes in effective moisture and seasonal temperature (enhanced El Niño-Southern Oscillation [ENSO] cycles) have characterized the Site 1019 record since about 3.5 ka.  +
Publication.10.1029/2002PA000864 +We present high-resolution paleoceanographic records of surface and deep water conditions within the northern Red Sea covering the last glacial maximum and termination I using alkenone paleothermometry, stable oxygen isotopes, and sediment compositional data. Paleoceanographic records in the restricted desert-surrounded northern Red Sea are strongly affected by the stepwise sea level rise and appear to record and amplify well-known millennial-scale climate events from the North Atlantic realm. During the last glacial maximum (LGM), sea surface temperatures were about 4°C cooler than the late Holocene. Pronounced coolings associated with Heinrich event 1 (~2°C below the LGM level) and the Younger Dryas imply strong atmospheric teleconnections to the North Atlantic. Owing to the restricted exchange with the Indian Ocean, Red Sea salinity is particularly sensitive to changes in global sea level. Paleosalinities exceeded 50 psu during the LGM. A pronounced freshening of the surface waters is associated with the meltwater peaks MWP1a and MWP1b owing to an increased surface-near inflow of "normal" saline water from the Indian Ocean. Vertical delta18O gradients are also increased during these phases, indicating stronger surface water stratification. The combined effect of deglacial changes in sea surface temperature and salinity on water column stratification initiated the formation of two sapropel layers, which were deposited under almost anoxic condition in a stagnant water body.  +
Publication.10.1029/2004PA001061 +Detailed deglacial and Holocene records of planktonic d18O and Mg/Ca-based sea surface temperature (SST) from the Okinawa Trough suggest that at ~18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.  +
Publication.10.1029/2004PA001071 +High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the delta18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic delta18O values of 1per mil and an increase in amplitude variations by up to 1.5 per mil, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7 per mil). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, delta18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the delta18O values decreased by about 0.5 per mil, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term delta18O fluctuations between 3.8 and 3.6 Ma.  +
Publication.10.1029/2005PA001208 +Multiproxy geologic records of d18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evident in the paleotemperature record, there is no glacial-interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high-latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as 4 practical salinity units occur with a dominant period of 3-5 ky during the glacial/deglacial interval and 1.0-1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial-scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic-Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long-term changes in mean ITCZ position and Atlantic-Pacific moisture transport, respectively.  +
Publication.10.1029/2006GC001514 +Sea surface temperature and oxygen isotopic records from two well-dated Indian Ocean cores covering the last deglaciation show the occurrence of two periods of increased salinity along the route of warm surface water transport from the Indian to the Atlantic Ocean, one between 18 and 14.5 ka and the other during the Younger Dryas. Our results imply that during these periods, salt accumulated in the tropical Atlantic, creating favorable conditions for an abrupt resumption of the thermohaline circulation and abrupt northern hemisphere warming. Furthermore, we suggest that the observed pattern of millennial climate variability during the last glacial and deglaciation resulted from the interaction between the relatively slow rhythm of expansion and decay of the northern hemisphere ice sheets, and El Niño–Southern Oscillation variability, through changes in the position of the Intertropical Convergence Zone. This interaction generated an oscillator with millennial time response that operated at times of sufficient northern hemisphere ice sheets extent.  +
Publication.10.1029/2009PA001740 +In this study we utilize two organic geochemical proxies, the Uk'37 index and TEX86, to examine past sea surface temperatures (SST) from a site located near the Nile River Delta in the eastern Mediterranean (EM) Sea. The Uk'37 and TEX86 records generally are in agreement and indicate SST ranges of 14°C-26°C and 14°C-28°C, respectively, during the last 27 cal ka. During the Holocene, TEX86-based SST estimates are usually higher than Uk'37-based SST estimates, which is likely due to seasonal differences between the timing of the haptophyte and crenarchaeota blooms in the EM and is related to the onset of the modern flow regime of the Nile River. Both records show that SST varied on centennial to millennial timescales in response to global climate events, i.e., cooling during the Last Glacial Maximum (LGM), Heinrich event 1 (H1), and the Younger Dryas (YD) and warming during the Bølling-Allerød and in the early Holocene during deposition of sapropel S1. The H1 cooling was particularly severe and is marked by a drop in SST of ~4.5°C in comparison to pre-H1 SST, with temperatures >1°C cooler than during the LGM. In contrast to high-latitude and western Mediterranean records, which indicate both an abrupt onset and termination of the YD event, the transition from the YD to the Holocene was much more gradual in the EM.  +
Publication.10.1029/2011GL050202 +Central Asia is currently a semiarid-arid region, dominated by the Westerlies. It is important to understand mechanisms of climate and precipitation changes here, as water availability in the region is crucial today and in the future. High-resolution, absolutely-dated oxygen isotope (d18O) records of stalagmites from Kesang Cave characterize a dynamic precipitation history over most of the past 500,000 years. This record demonstrates, for the first time, that climate change in the region exhibits a processional rhythm with abrupt inceptions of low d18O speleothem growth at times of high Northern Hemisphere summer insolation followed by gradual d18O increases that track decreases of insolation. These observations and interpretations contrast with the interpretation of nearby, but higher elevation ice core records. The absolutely-dated cave d18O shifts can be used to correlate the regional climate variability by providing chronological marks. Combined with other paleoclimate records, the Kesang observations suggest that possible incursions of Asian summer monsoon rainfall or related moisture into the Kesang site and/or adjacent areas during the high insolation times may play an important role in changing orbital-scale hydrology of the region. Based on our record, arid climate will prevail in this region for the next several millennia, providing that anthropogenic effects do not supersede natural processes.  +
Publication.10.1029/2011PA002157 +The prevailing paradigm of abrupt climate change holds that rapid shifts associated with the most extreme climate swings of the last glacial cycle were forced by changes in the strength and northward extension of Atlantic Meridional Overturning Circulation (AMOC), resulting in an abrupt reorganization of atmospheric circulation patterns with global teleconnections. To determine the timing of tropical Atlantic atmospheric circulation changes over the past 21 ka BP, we reconstruct high resolution sea surface temperature and d18OSW (a proxy for surface salinity) records based on Mg/Ca ratios and oxygen isotope measurements in the planktonic foraminifera Globigerinoides ruber from a sediment core located on the western margin of the Florida Straits. As a proxy for meltwater discharge influence on Florida Straits surface water salinity, we also measured Ba/Ca ratios in G. ruber from the same core. Results show that riverine influence on Florida Straits surface water started by 17.2 ka BP and ended by 13.6 ka BP, 600 years before the start of the Younger Dryas (YD) cold interval. The initiation of the YD is marked by an abrupt increase in Florida Straits d18OSW values, indicating a shift to elevated sea surface salinity occurring in 130 years, most likely resulting from increased regional aridity and/or reduced precipitation. In order to resolve the timing of tropical atmospheric circulation change relative to AMOC variability across this transition, we compare the timing of surface water changes to a recently published record of Florida Current variability in the same core reconstructed from benthic oxygen isotope measurements. We find synchronous changes in atmospheric and ocean circulation on the transition into the YD, consistent with an abrupt reduction in AMOC as the driver of tropical Atlantic atmospheric circulation change at this time.  +
Publication.10.1029/2012PA002284 +Previous studies showed that sea surface salinity (SSS) in the Florida Straits as well as Florida Current transport covaried with changes in North Atlantic climate over the past two millennia. However, little is known about earlier Holocene hydrographic variability in the Florida Straits. Here, we combine Mg/Ca-paleothermometry and stable oxygen isotope measurements on the planktonic foraminifera Globigerinoides ruber (white variety) from Florida Straits sediment core KNR166-2 JPC 51 (24 deg 24.70'N, 83 deg 13.14'W, 198 m deep) to reconstruct a high-resolution (~25 yr/sample) early to mid Holocene record of sea surface temperature and d18OSW (a proxy for SSS) variability. After removing the influence of global d18OSW change due to continental ice volume variability, we find that early Holocene SSS enrichments are associated with increased evaporation/precipitation ratios in the Florida Straits during periods of reduced solar forcing, increased ice rafted debris in the North Atlantic and the development of more permanent El Niño-like conditions in the eastern equatorial Pacific. When considered with previous high-resolution reconstructions of Holocene tropical atmospheric circulation changes, our results provide evidence that variations in solar forcing over the early Holocene had a significant impact on the global tropical hydrologic cycle.  +
Publication.10.1038/NGEO920 +High sea surface temperatures in the western Pacific warm pool fuel atmospheric convection and influence tropical climate. This region also hosts the Indonesian throughflow, the network of currents through which surface and thermocline waters are transported from the western equatorial Pacific Ocean into the Indian Ocean. Here we show, using records of the d18O and Mg/Ca of planktonic foraminifera from eight sediment cores, that from about 10,000 to 7,000 years ago, sea surface temperatures in the western sector of the western Pacific warm pool were about 0.5°C higher than during pre-industrial times. We also find that about 9,500 years ago, when the South China and Indonesian seas were connected by rising sea level, surface waters in the Makassar Strait became relatively fresher. We suggest that the permanent reduction of surface salinity initiated the enhanced flow at lower, thermocline depths seen in the modern Indonesian throughflow. However, the uniformly warm sea surface temperatures found upstream and downstream of the Indonesian throughflow indicate that the early Holocene warmth in this region was not directly related to reduced heat transport by the throughflow that may have resulted from surface freshening of the Makassar Strait. Instead, we propose that the elevated temperatures were the result of a westward shift or expansion of the boundaries of the western Pacific warm pool.  +
Publication.10.1038/nature01779 +Any assessment of future climate change requires knowledge of the full range of natural variability in the El Niño/Southern Oscillation (ENSO) phenomenon. Here we splice together fossil-coral oxygen isotopic records from Palmyra Island in the tropical Pacific Ocean to provide 30–150-year windows of tropical Pacific climate variability within the last 1,100 years. The records indicate mean climate conditions in the central tropical Pacific ranging from relatively cool and dry during the tenth century to increasingly warmer and wetter climate in the twentieth century. But the corals also document a broad range of ENSO behaviour that correlates poorly with these estimates of mean climate. The most intense ENSO activity within the reconstruction occurred during the mid-seventeenth century. Taken together, the coral data imply that the majority of ENSO variability over the last millennium may have arisen from dynamics internal to the ENSO system itself.  +
Publication.10.1038/nature09751 +The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica (Cook et al., 2005; Stammerjohn et al., 2008) highlight the impact of recent atmospheric (Steig et al., 2009) and oceanic warming (Gille, 2002) on the cryosphere. Observations (Cook et al., 2005; Stammerjohn et al., 2008) and models (Pollard and DeConto, 2009) suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000?years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX86 sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations (Huybers and Denton, 2008, doi:10.1038/ngeo311). On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability (Mayewski et al., 2004, doi:10.1016/j.yqres.2004.07.001). Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions (Moreno et al., 2010, doi:10.1130/G30962.1) and El Niño/Southern Oscillation variability (Conroy et al., 2008, doi:10.1016/j.quascirev.2008.02.015) indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula (Yuan et al., 2004, doi:10.1017/S0954102004002238) strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling (Moreno et al., 2010, doi:10.1130/G30962.1; Anderson et al., 2009, doi:10.1126/science.1167441).  +