57
U

Property:Abstract

From Linked Earth Wiki
Revision as of 13:33, 4 November 2016 by Andreasschmittner (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
  • Property Type: Text

A summary of a scientific article.

Pages using the property "Abstract"

Showing 25 pages using this property.

View (previous 25 | next 25) (20 | 50 | 100 | 250 | 500)

P
Publication.10.0129/94PA00208 +High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the delta18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic delta18O values of 1per mil and an increase in amplitude variations by up to 1.5 per mil, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7 per mil). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, delta18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the delta18O values decreased by about 0.5 per mil, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term delta18O fluctuations between 3.8 and 3.6 Ma.  +
Publication.10.1002/2013PA002534 +We investigate the relationship between tropical Pacific and Southern Ocean variability during the Holocene using the stable oxygen isotope and magnesium/calcium records of co-occurring planktonic and benthic foraminifera from a marine sediment core collected in the western equatorial Pacific. The planktonic record exhibits millennial-scale sea surface temperature (SST) oscillations over the Holocene of ~0.5°C while the benthic δ18Oc document ~0.10‰ millennial-scale changes of Upper Circumpolar Deep Water (UCDW), a water mass which outcrops in the Southern Ocean. Solar forcing as an explanation for millennial-scale SST variability requires (1) a large climate sensitivity and (2) a long 400-year delayed response, suggesting that if solar forcing is the cause of the variability, it would need to be considerably amplified by processes within the climate system at least at the core location. We also explore the possibility that SST variability arose from volcanic for! cing using a simple red noise model. Our best estimates of volcanic forcing falls short of reproducing the amplitude of observed SST variations although it produces power at low-frequency similar to that observed in the MD81 record. Although we cannot totally discount the volcanic and solar forcing hypotheses, we are left to consider that the most plausible source for Holocene millennial-scale variability lies within the climate system itself. In particular, UCDW variability coincided with deep North Atlantic changes, indicating a role for the deep ocean in Holocene millennial-scale variability.  +
Publication.10.1002/2013PA002555 +The sea surface temperature (SST) of the tropical Indian Ocean is a major component of global climate teleconnections. While the Holocene SST history is documented for regions affected by the Indian and Arabian monsoons, data from the near-equatorial western Indian Ocean are sparse. Reconstructing past zonal and meridional SST gradients requires additional information on past temperatures from the western boundary current region. We present a unique record of Holocene SST and thermocline depth variations in the tropical western Indian Ocean as documented in foraminiferal Mg/Ca ratios and d18O from a sediment core off northern Tanzania. For Mg/Ca and thermocline d18O, most variance is concentrated in the centennial to bicentennial periodicity band. On the millennial time scale, an early to mid-Holocene (~7.8-5.6 ka) warm phase is followed by a temperature drop by up to 2°C, leading to a mid-Holocene cool interval (5.6-4.2 ka). The shift is accompanied by an initial reduction in the difference between surface and thermocline foraminiferal d18O, consistent with the thickening of the mixed layer and suggestions of a strengthened Walker circulation. However, we cannot confirm the expected enhanced zonal SST gradient, as the cooling of similar magnitude had previously been found in SSTs from the upwelling region off Sumatra and in Flores air temperatures. The SST pattern probably reflects the tropical Indian Ocean expression of a large-scale climate anomaly rather than a positive Indian Ocean Dipole-like mean state.  +
Publication.10.1002/2015GL063956 +Annually resolved and millennium-long reconstructions of large-scale temperature variability are primarily composed of tree ring width (TRW) chronologies. Changes in ring width, however, have recently been shown to bias the ratio between low- and high-frequency signals. To overcome limitations in capturing the full spectrum of past temperature variability, we present a network of 15 maximum latewood density (MXD) chronologies distributed across the Northern Hemisphere extratropics. Independent subsets of continental-scale records consistently reveal high MXD before 1580 and after 1910, with below average values between these periods. Reconstructed extratropical summer temperatures reflect not only these long-term trends but also distinct cooling pulses after large volcanic eruptions. In contrast to TRW-dominated reconstructions, this MXD-based record indicates a delayed onset of the Little Ice Age by almost two centuries. The reduced memory inherent in MXD is likely responsible for the rapid recovery from volcanic-induced cooling in the fourteenth century and the continuation of warmer temperatures until ~1600.  +
Publication.10.1002/2015PA002802 +The advection of relatively fresh Java Sea water through the Sunda Strait is presently responsible for the low-salinity "tongue" in the eastern tropical Indian Ocean with salinities as low as 32 per mil. The evolution of the hydrologic conditions in the eastern tropical Indian Ocean since the last glacial period, when the Sunda shelf was exposed and any advection via the Sunda Strait was cutoff, and the degree to which these conditions were affected by the Sunda Strait opening are not known. Here we have analyzed two sediment cores (GeoB 10042-1 and GeoB 10043-3) collected from the eastern tropical Indian Ocean off the Sunda Strait that cover the past ~40,000?years. We investigate the magnitude of terrigenous supply, sea surface temperature (SST), and seawater d18O (d18Osw) changes related to the sea level-driven opening of the Sunda Strait. Our new spliced records off the Sunda Strait show that during the last glacial, average SST was cooler and d18Osw was higher than elsewhere in the eastern tropical Indian Ocean. Seawater d18O decreased ~0.5 per mil after the opening of the Sunda Strait at ~10 kyr B.P. accompanied by an SST increase of 1.7°C. We suggest that fresher sea surface conditions have persisted ever since due to a continuous transport of low-salinity Java Sea water into the eastern tropical Indian Ocean via the Sunda Strait that additionally increased marine productivity through the concomitant increase in terrigenous supply.  +
Publication.10.1002/2015PA002816 +It is difficult to untangle the mixed influences of high- and low-latitude climate forcing in the eastern equatorial Pacific (EEP). Here we test the hypothesis that the Southern Ocean drove change in the EEP via subsurface intermediate waters during the last deglaciation. We use the d18O signature of benthic foraminifera to reconstruct water density changes during the last 25 kyr at three intermediate water depths (370 m, 600 m, and 1000 m) in the EEP. Carbonate d18O records a combined signature of temperature and salinity and is therefore more closely related to density than temperature or salinity alone. We find that benthic foraminiferal d18O values decreased first in the subsurface, simultaneously with rising temperatures over Antarctica, and propagated up to the surface within ~3 kyr. The early subsurface response initiated a rapid decrease in density stratification over the upper water column as indicated by reduced d18O gradients between surface and intermediate depths. Stratification of the upper water column remained low through the termination, with stratification minima reached during Heinrich Stadial 1 and the Younger Dryas (YD), synchronous with the two-part deglacial rise in atmospheric CO2. Centennial-scale shifts toward heavier d18O signatures at 370 and 600?m during the YD indicate short-lived shifts in the Subantarctic Mode Water/Antarctic Intermediate Water boundary to shallower intermediate depths. We suggest that decreased density gradients during the deglaciation accelerated vertical mixing across the EEP, and potentially the entire South Pacific subtropical gyre, which enhanced CO2 delivery from depth to the surface ocean and atmosphere.  +
Publication.10.1002/jqs.2767 +To reconstruct the still poorly understood thermocline fluctuations in the western tropical Indian Ocean, a sediment core located off Tanzania (GeoB12610-2; 04 ̊49.000S, 39 ̊25.420E, 399m water depth) covering the last 35 ka was analysed. Mg/Ca-derived temperatures from the planktonic foraminifera Globigerinoides ruber (white) and Neogloboquadrina dutertrei indicate that the last glacial was $2.5 ̊C colder in the surface waters and $3.5 ̊C colder in the thermocline compared with the present day. The depth of the thermocline and thus the stratification of the water column were shallower during glacial periods and deepened during the deglaciation and Holocene. The increased inflow of Southern Ocean Intermediate Waters via ‘ocean tunnels’ appears to cool the thermocline from below, leading to a similarity between the thermocline record of GeoB12610-2 with the Antarctic EDML temperature curve during the glacial. With rising sea level and the corresponding greater inflow of Red Sea Waters and Indonesian Intermediate Waters, the proportion of Southern Ocean Intermediate Water within the South Equatorial Current is reduced and, by Holocene time, the correlation to Antarctica is barely traceable. Comparison with the eastern Indian Ocean reveals that the thermocline depth reverses from the last glacial to present.  +
Publication.10.1002/palo.20032 +In situ measurements of Mg/Ca, Zn/Ca, Mn/Ca, and Ba/Ca in Globigerinoides bulloides and Globigerina ruber from southwest Pacific core top sites and plankton tow are reported and their potential as paleoproxies is explored. The modern samples cover 20° of latitude from 34°S to 54°S, 7-19°C water temperature, and variable influence of subantarctic (SAW) and subtropical (STW) surface waters. Trace element signatures recorded in core top and plankton tow planktic foraminifera are examined in the context of the chemistry and nutrient profiles of their modern water masses. Our observations suggest that Zn/Ca and Mn/Ca may have the potential to trace SAW and STW. Intraspecies and interspecies offsets identified by in situ measurements of Mg/Ca and Zn/Ca indicate that these ratios may also record changes in thermal and nutrient stratification in the upper ocean. We apply these potential proxies to fossilized foraminifera from the high-resolution core MD97 2121. At the Last Glacial Maximum, surface water Mg/Ca temperature estimates indicate that temperatures were approximately 6-7°C lower than those of the present, accompanied by low levels of Mn/Ca and Zn/Ca and minimal thermal and nutrient stratification. This is consistent with regional dominance of SAW and reduced STW inflow associated with a reduced South Pacific Gyre (SPG). Upper ocean thermal and nutrient stratification collapsed during the Antarctic Cold Reversal, before poleward migration of the zonal winds and ocean fronts invigorated the SPG and increased STW inflow in the early Holocene. Together with reduced winds, this favored a stratified upper ocean from circa 10 ka to the present.  +
Publication.10.1002/palo.20053 +Different proxies for sea surface temperature (SST) often exhibit divergent trends for deglacial warming in tropical regions, hampering our understanding of the phase relationship between tropical SSTs and continental ice volume at glacial terminations. To reconcile divergent SST trends, we report reconstructions of two commonly used paleothermometers (the foraminifera G. ruber Mg/Ca and the alkenone unsaturation index) from a marine sediment core collected in the southwestern tropical Indian Ocean encompassing the last 37,000 years. Our results show that SSTs derived from the alkenone unsaturation index (UK'37) are consistently warmer than those derived from Mg/Ca by ~2-3°C except for the Heinrich Event 1. In addition, the initial timing for the deglacial warming of alkenone SST started at ~15.6 ka, which lags behind that of Mg/Ca temperatures by 2.5 kyr. We argue that the discrepancy between the two SST proxies reflects seasonal differences between summer and winter rather than post-depositional processes or sedimentary biases. The UK'37 SST record clearly mimics the deglacial SST trend recorded in the North Atlantic region for the earlier part of the termination, indicating the early deglacial warming trend attributed to local summer temperatures was likely mediated by changes in the Atlantic Meridional Overturning Circulation at the onset of the deglaciation, In contrast, the glacial to interglacial SST pattern recorded by G. ruber Mg/Ca probably reflects cold season SSTs. This indicates that the cold season SSTs was likely mediated by climate changes in the southern hemisphere, as it closely tracks the Antarctic timing of deglaciation. Therefore our study reveals that the tropical southwestern Indian Ocean seasonal SST was closely linked to climate changes occurring in both hemispheres. The austral summer and winter recorded by each proxy is further supported with seasonal SST trends modeled by AOGCMs for our core site. Our interpretation that the alkenone and Mg/Ca SSTs are seasonally biased may also explain similar proxy mismatches observed in other tropical regions at the onset of the last termination.  +
Publication.10.1016/S0012-821X(01)00545-3 +Sediment core GeoB 1023-5 from the eastern South Atlantic was investigated at high temporal resolution for variations of sea-surface temperature (SST) during the past 22 kyr, using the alkenone (UK′37) method. SSTs increased by 3.5°C from about 18°C during the Last Ice Age (21±2 cal kyr BP) to about 21.5°C at 14.5 cal kyr BP. This warming trend associated with the deglaciation phase was followed by a cooling event with lowest SSTs near 20°C, persisting for about 1000 years between 13 and 12 cal kyr BP. The SSTs then continued to increase to about 22.5°C at the Holocene climatic optimum at 7 cal kyr BP, and decreased again during the Late Holocene to a core-top value of 19.8°C that is comparable to modern annual mean SST values. When compared with alkenone SST records from the eastern North Atlantic, our SST record indicates continuous warming throughout the deglaciation phase in the Benguela Current, while its northern counterpart, the Canary Current, experienced prominent cooling during ‘Heinrich Event 1’ (H1). On the other hand, for the time period corresponding to the ‘Younger Dryas’ (YD) cooling event, the Benguela SST record exhibits a cold-temperature interval that corresponds to that observed in the eastern North Atlantic SST records. This observation suggests that interhemispheric climate response in Atlantic eastern boundary current systems was different with respect to the two abrupt climate events associated with Termination I. For the H1, the eastern South Atlantic SST record strongly supports the hypothesis that an ‘anti-phase’ thermal behavior in South Atlantic surface waters was forced by the slowdown of the North Atlantic Deep Water formation during cold spells in the North Atlantic. In contrast, the abrupt cooling in the eastern South Atlantic coincident with the YD period was probably induced by more vigorous global atmospheric circulation, enhancing the upwelling intensity in both eastern boundary current systems. This atmospheric control may have overridden any effect caused by changes in thermohaline circulation on the South Atlantic SSTs during the YD, which leads to the assumption that the thermohaline circulation was already much closer to its interglacial mode during the YD than during the H1.  +
Publication.10.1016/S0025-3227(98)00182-0 +Past sea surface temperatures (SST) in the northern and southern areas of the South China Sea have been reconstructed for the past 220 kyr using the UK37 alkenone index. The SST profiles follow the glacial/interglacial pattern exhibiting differences between Last Glacial Maximum and Holocene that are 1°–3°C larger than those observed at the same latitudes in the Atlantic and Pacific Oceans. In Termination I both planktonic foraminiferal δ18O and SST exhibit well-defined Bølling-Allerød and Younger Dryas events with temperature differences between both periods of 0.8° and 0.4°C in north and south, respectively. SSTs record a constant north-south difference of 1°C in the interglacials and nearly 2.5°C in the glacial stages. These differences define two distinct climatic and water circulation patterns that correspond with glacial/interglacial sea level oscillations which opened and closed water exchange with the tropical Indo-Pacific Ocean through the present Sunda Shelf.  +
Publication.10.1016/S0031-0182(00)00053-5 +Alkenone unsaturation ratios and planktonic delta18O records from sediment cores of the Alboran, Ionian and Levantine basins in the Mediterranean Sea show pronounced variations in paleo-temperatures and -salinities of surface waters over the last 16,000 years. Average sea surface temperatures (SSTs) are low during the last glacial (averages prior to 13,000 years: 11-15°C), vary rapidly at the beginning of the Holocene, and increase to 17-18°C at all sites during S1 formation (dated between 9500 and 6600 calendar years). The modern temperature gradient (2-3°C) between the Mediterranean sub-basins is maintained during formation of sapropel S1 in the Eastern Mediterranean Sea. After S1, SSTs have remained uniform in the Alboran Sea at 18°C and have fluctuated around 20°C in the Ionian and Levantine Basin sites. The delta18O of planktonic foraminifer calcite decreases by 2 per mil from the late glacial to S1 sediments in the Ionian Basin and by 2.8 per mil in the Levantine Basin. In the Alboran Sea, the decrease is 1.7 per mil. Of the 2.8 per mil decrease in the Levantine Basin, the effect of global ice volume accounts for a maximum of 1.05 per mil and the temperature increase explains only a maximum of 1.3 per mil. The remainder is attributed to salinity changes. We use the temperature and salinity estimates to calculate seawater density changes. They indicate that a reversal of water mass circulation is not a likely explanation for increased carbon burial during S1 time. Instead, it appears that intermediate and deep water formation may have shifted to the Ionian Sea approximately 2000 years before onset of S1 deposition, because surface waters were as cold, but saltier than surface water in the Levantine Basin during the Younger Dryas. Sapropel S1 began to form at the same time, when a significant density decrease also occurred in the Ionian Sea.  +
Publication.10.1016/j.epsl.2005.11.012 +A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (delta18O(ivc-sw)) using Mg / Ca and delta18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and delta18O(ivc-sw), a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.  +
Publication.10.1016/j.epsl.2008.04.051 +Palaeoclimate records and numerical model simulations indicate that changes in tropical and subtropical sea surface temperatures and in the annual average position of the intertropical convergence zone are linked to high-latitude climate changes on millennial to glacial-interglacial timescales. It has recently been suggested that cooling in the high latitudes associated with abrupt climate-change events is evident primarily during the northern hemisphere winter, implying increased seasonality at these times. However, it is unclear whether such a seasonal bias also exists for the low latitudes. Here we analyse the Mg/Ca ratios of surface-dwelling foraminifera to reconstruct sea surface temperatures in the northeastern Gulf of Mexico for the past 300,000 years. We suggest that sea surface temperatures are controlled by the migration of the northern boundary of the Atlantic Warm Pool, and hence the position of the intertropical convergence zone during boreal summer, and are relatively insensitive to winter conditions. Our results suggest that summer Atlantic Warm Pool expansion is primarily affected by glacial-interglacial variability and low-latitude summer insolation. Because a clear signature of rapid climate-change events, such as the Younger Dryas cold event, is lacking in our record, we conclude that high-latitude events seem to influence only the winter Caribbean climate conditions, consistent with the hypothesis of extreme northern-hemisphere seasonality during abrupt cooling events.  +
Publication.10.1016/j.epsl.2008.06.029 +We present centennial records of sea surface and upper thermocline temperatures in Core MD01-2378 from the Timor Sea, which provide new insights into the variability of the Indonesian outflow across the last two glacial terminations. Mg/Ca in Globigerinoides ruber (white s. s.) indicates an overall increase of 3.2 °C in sea surface temperature (SST) over Termination I. Following an early Holocene plateau at 11.3-6.4 ka, SSTs cooled by 0.6 °C during the middle to late Holocene (6.4-0.7 ka). The early Holocene warming occurred in phase with increasing northern hemisphere summer insolation, coinciding with northward displacement of the Intertropical Convergence Zone, enhanced boreal summer monsoon and expansion of the Indo-Pacific Warm Pool. Thermocline temperatures (Pulleniatina obliquiloculata Mg/Ca) gradually decreased from 24.5 to 21.5 °C since 10.3 ka, reflecting intensification of a cool thermocline throughflow. The vertical structure of the upper ocean in the Timor Sea evolved in similar fashion during the Holocene and MIS5e, although the duration of SST plateaux differed (11.3 to 6.4 ka in Termination I and from 129 to 119 ka in Termination II), which was probably due to the more intense northern hemisphere summer insolation during MIS 5e. During both terminations, SST increased simultaneously in the southern high latitudes and the tropical eastern Indian Ocean, suggesting virtually instantaneous atmospheric climate feedbacks between the high and low latitudes.  +
Publication.10.1016/j.epsl.2013.05.022 +High resolution climate records of the ice age terminations from monsoon-dominated regions reveal the interplay of regional and global driving forces. Speleothem records from Chinese caves indicate that glacial terminations were interrupted by prominent weak monsoon intervals (WMI), lasting a few thousand years. Deglacial WMIs are interpreted as the result of cold temperature anomalies generated by sea ice feedbacks in the North Atlantic, most prominently during Heinrich Events. Recent modelling results suggest, however, that WMIs reflect changes in the intensity of the Indian rather than the East Asian monsoon. Here we use foraminiferal trace element (Mg/Ca and Ba/Ca) and stable isotope records from a sediment core off the Malabar coast in the southeastern Arabian Sea with centennial-scale resolution to test this hypothesis and to constrain the nature and timing of deglacial climate change in the tropical Indian Ocean. The Malabar deglacial SST record is unique in character and different from other tropical climate records. SST at the Last Glacial Maximum was 2.7'0.5 'C colder than pre-industrial SST. Deglacial warming started at 18.6 (95% CI range 18.8-18.1) kyr BP, within error of the onset of warming at other tropical sites as well as in Antarctica and the Southern Ocean and either coeval with or up to 1 kyr before the atmospheric CO2 rise. Warming took place in two steps separated by an interval of stable SST between 15.7 (16.2-14.9) and 13.2 (13.9-12.0) kyr BP. The d18O-water record and the Ba/Ca record, which is a measure of Indian sub-continent riverine runoff, indicate that the last ice age termination was marked by a prominent weak Indian Monsoon interval interrupted by an intense monsoon phase, as seen in speleothem records and predicted by modelling. A strong correspondence between the timing of the Malabar d18Osw record and the Hulu Cave monsoon record suggests that deglacial d18O changes in both localities dominantly reflect compositional changes in precipitation, likely driven by changes in the North Atlantic.  +
Publication.10.1016/j.epsl.2013.11.032 +Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.  +
Publication.10.1016/j.gca.2012.10.016 +Different proxies for sea surface temperature (SST) often exhibit divergent trends for deglacial warming in tropical regions, hampering our understanding of the phase relationship between tropical SSTs and continental ice volume at glacial terminations. To reconcile divergent SST trends, we report reconstructions of two commonly used paleothermometers (the foraminifera G. ruber Mg/Ca and the alkenone unsaturation index) from a marine sediment core collected in the southwestern tropical Indian Ocean encompassing the last 37,000 years. Our results show that SSTs derived from the alkenone unsaturation index (UK'37) are consistently warmer than those derived from Mg/Ca by ~2-3°C except for the Heinrich Event 1. In addition, the initial timing for the deglacial warming of alkenone SST started at ~15.6 ka, which lags behind that of Mg/Ca temperatures by 2.5 kyr. We argue that the discrepancy between the two SST proxies reflects seasonal differences between summer and winter rather than post-depositional processes or sedimentary biases. The UK'37 SST record clearly mimics the deglacial SST trend recorded in the North Atlantic region for the earlier part of the termination, indicating the early deglacial warming trend attributed to local summer temperatures was likely mediated by changes in the Atlantic Meridional Overturning Circulation at the onset of the deglaciation, In contrast, the glacial to interglacial SST pattern recorded by G. ruber Mg/Ca probably reflects cold season SSTs. This indicates that the cold season SSTs was likely mediated by climate changes in the southern hemisphere, as it closely tracks the Antarctic timing of deglaciation. Therefore our study reveals that the tropical southwestern Indian Ocean seasonal SST was closely linked to climate changes occurring in both hemispheres. The austral summer and winter recorded by each proxy is further supported with seasonal SST trends modeled by AOGCMs for our core site. Our interpretation that the alkenone and Mg/Ca SSTs are seasonally biased may also explain similar proxy mismatches observed in other tropical regions at the onset of the last termination.  +
Publication.10.1016/j.gloplacha.2011.06.006 +Sea-surface (based on Globigerinoides ruber sensu stricto Mg/Ca ratios) and thermocline (based on Pulleniatina obliquiloculata Mg/ca ratios) temperature reconstruction from sediment core MD05-2904 located in the northern SCS for the last 25,000 years.  +
Publication.10.1016/j.margeo.2010.06.003 +The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and d18O analyses and to estimate seawater d18O (d18Osw). The difference between surface and thermocline temperatures (delta T) and d18Osw (delta d18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our delta d18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the d18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ~18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum d18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.  +
Publication.10.1016/j.orggeochem.2012.11.001 +The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the Common Era (past 2000 years) global ocean sea surface temperature (SST) variations, and the underlying driving mechanisms, are poorly constrained. Here we present a global synthesis of Common Era SSTs derived solely from marine archives. The synthesis uses 57 individual SST reconstructions that meet strict quality control criteria. We find an SST cooling trend during 0-1800 CE that is robust against explicit tests for potential biases in the reconstructions. The surface cooling trend for 801-1800 CE is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with SST simulated by an ensemble of climate model simulations using best estimates of past forcings. Single and cumulative forcing climate model simulations suggest that the ocean SST cooling trend is not a response to orbital forcing, which is globally weak over this interval, but rather to increased frequency of explosive volcanism in recent centuries. This finding provides support for the hypothesis that ocean dynamics transform episodic volcanic forcing into a centennial and global-scale cooling trend.  +
Publication.10.1016/j.palaeo.2007.08.013 +In situ measurements of Mg/Ca, Zn/Ca, Mn/Ca, and Ba/Ca in Globigerinoides bulloides and Globigerina ruber from southwest Pacific core top sites and plankton tow are reported and their potential as paleoproxies is explored. The modern samples cover 20° of latitude from 34°S to 54°S, 7-19°C water temperature, and variable influence of subantarctic (SAW) and subtropical (STW) surface waters. Trace element signatures recorded in core top and plankton tow planktic foraminifera are examined in the context of the chemistry and nutrient profiles of their modern water masses. Our observations suggest that Zn/Ca and Mn/Ca may have the potential to trace SAW and STW. Intraspecies and interspecies offsets identified by in situ measurements of Mg/Ca and Zn/Ca indicate that these ratios may also record changes in thermal and nutrient stratification in the upper ocean. We apply these potential proxies to fossilized foraminifera from the high-resolution core MD97 2121. At the Last Glacial Maximum, surface water Mg/Ca temperature estimates indicate that temperatures were approximately 6-7°C lower than those of the present, accompanied by low levels of Mn/Ca and Zn/Ca and minimal thermal and nutrient stratification. This is consistent with regional dominance of SAW and reduced STW inflow associated with a reduced South Pacific Gyre (SPG). Upper ocean thermal and nutrient stratification collapsed during the Antarctic Cold Reversal, before poleward migration of the zonal winds and ocean fronts invigorated the SPG and increased STW inflow in the early Holocene. Together with reduced winds, this favored a stratified upper ocean from circa 10 ka to the present.  +
Publication.10.1016/j.quascirev.2005.11.010 +Records of planktonic and benthic foraminiferal d18O and planktonic Mg/Ca from core TR163-22, just northwest of the Galápagos Islands, reveal a detailed (250¿450 year resolution) climate history of the region over the last 135 thousand years (kyr). Sea surface temperatures (SSTs), reconstructed from G. ruber Mg/Ca, averaged 24.3±0.4 °C during the Holocene, 22.6±0.6 °C during marine isotope stage (MIS) 2, 3 and 4, and 26.0±0.9 °C during MIS 5e. Changes in SST lead changes in both planktonic and benthic d18O by an average not, vert, similar3 kyr, suggesting that SST changes in this region predated continental ice volume changes. Changes in SST display clear millennial scale variability, especially in marine isotope stage 3, with behavior somewhat similar to Antarctic proxy air temperature and South Pacific SST records. Removal of the temperature component from the planktonic d18O record demonstrates that glacial-interglacial d18O-water changes at this site were 1.0±0.2¿, similar to estimates for mean ocean shifts, implying that salinity changes due to regional hydrological variation between the Last Glacial Maximum and Holocene in the Galápagos region were minimal. Comparison between the TR163-22 SST record and an SST record from core TR163-19 North of the Equatorial Front reveals a largely similar broad-scale climate history, suggesting that changes in the Galápagos region were caused by large scale forcing rather than by local or regional dynamical changes. Changes in atmospheric greenhouse forcing are the most plausible explanation for the observed large-scale climate changes in the eastern equatorial Pacific.  +
Publication.10.1016/j.quascirev.2016.02.012 +The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and d18O analyses and to estimate seawater d18O (d18Osw). The difference between surface and thermocline temperatures (delta T) and d18Osw (delta d18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our delta d18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the d18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ~18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum d18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.  +
Publication.10.1016/j.quascirev.2016.11.012 +The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated ( 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950–1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.  +